Source code for dalib.adaptation.dann

from typing import Optional
import torch
import torch.nn as nn
from dalib.modules.grl import WarmStartGradientReverseLayer
from dalib.modules.classifier import Classifier as ClassifierBase
from ._util import binary_accuracy

__all__ = ['DomainAdversarialLoss']


[docs]class DomainAdversarialLoss(nn.Module): r"""The `Domain Adversarial Loss <https://arxiv.org/abs/1505.07818>`_ Domain adversarial loss measures the domain discrepancy through training a domain discriminator. Given domain discriminator :math:`D`, feature representation :math:`f`, the definition of DANN loss is .. math:: loss(\mathcal{D}_s, \mathcal{D}_t) &= \mathbb{E}_{x_i^s \sim \mathcal{D}_s} log[D(f_i^s)] \\ &+ \mathbb{E}_{x_j^t \sim \mathcal{D}_t} log[1-D(f_j^t)].\\ Parameters: - **domain_discriminator** (class:`nn.Module` object): A domain discriminator object, which predicts the domains of features. Its input shape is (N, F) and output shape is (N, 1) - **reduction** (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` Inputs: f_s, f_t - **f_s** (tensor): feature representations on source domain, :math:`f^s` - **f_t** (tensor): feature representations on target domain, :math:`f^t` Shape: - f_s, f_t: :math:`(N, F)` where F means the dimension of input features. - Outputs: scalar by default. If :attr:``reduction`` is ``'none'``, then :math:`(N, )`. Examples:: >>> from dalib.modules.domain_discriminator import DomainDiscriminator >>> discriminator = DomainDiscriminator(in_feature=1024, hidden_size=1024) >>> loss = DomainAdversarialLoss(discriminator, reduction='mean') >>> # features from source domain and target domain >>> f_s, f_t = torch.randn(20, 1024), torch.randn(20, 1024) >>> output = loss(f_s, f_t) """ def __init__(self, domain_discriminator: nn.Module, reduction: Optional[str] = 'mean'): super(DomainAdversarialLoss, self).__init__() self.grl = WarmStartGradientReverseLayer(alpha=1., lo=0., hi=1., max_iters=1000, auto_step=True) self.domain_discriminator = domain_discriminator self.bce = nn.BCELoss(reduction=reduction) self.domain_discriminator_accuracy = None def forward(self, f_s: torch.Tensor, f_t: torch.Tensor) -> torch.Tensor: f = self.grl(torch.cat((f_s, f_t), dim=0)) d = self.domain_discriminator(f) d_s, d_t = d.chunk(2, dim=0) d_label_s = torch.ones((f_s.size(0), 1)).to(f_s.device) d_label_t = torch.zeros((f_t.size(0), 1)).to(f_t.device) self.domain_discriminator_accuracy = 0.5 * (binary_accuracy(d_s, d_label_s) + binary_accuracy(d_t, d_label_t)) return 0.5 * (self.bce(d_s, d_label_s) + self.bce(d_t, d_label_t))
class ImageClassifier(ClassifierBase): def __init__(self, backbone: nn.Module, num_classes: int, bottleneck_dim: Optional[int] = 256): bottleneck = nn.Sequential( nn.Linear(backbone.out_features, bottleneck_dim), nn.BatchNorm1d(bottleneck_dim), nn.ReLU() ) super(ImageClassifier, self).__init__(backbone, num_classes, bottleneck, bottleneck_dim)